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We recently reported a deletion of exon 2 of the trimethyllysine
hydroxylase epsilon (TMLHE) gene in a proband with autism.
TMLHE maps to the X chromosome and encodes the first enzyme
in carnitine biosynthesis, 6-N-trimethyllysine dioxygenase. Deletion
of exon 2 of TMLHE causes enzyme deficiency, resulting in increased
substrate concentration (6-N-trimethyllysine) and decreased product
levels (3-hydroxy-6-N-trimethyllysine and γ-butyrobetaine) in plasma
and urine. TMLHE deficiency is common in control males (24 in
8,787 or 1 in 366) and was not significantly increased in frequency
in probands from simplex autism families (9 in 2,904 or 1 in 323).
However, it was 2.82-fold more frequent in probands from male-
male multiplex autism families compared with controls (7 in 909 or
1 in 130; P = 0.023). Additionally, six of seven autistic male siblings
of probands in male-male multiplex families had the deletion, sug-
gesting that TMLHE deficiency is a risk factor for autism (metaa-
nalysis Z-score = 2.90 and P = 0.0037), although with low pene-
trance (2–4%). These data suggest that dysregulation of carnitine
metabolism may be important in nondysmorphic autism; that ab-
normalities of carnitine intake, loss, transport, or synthesis may be
important in a larger fraction of nondysmorphic autism cases; and
that the carnitine pathway may provide a novel target for therapy
or prevention of autism.

The role of carnitine in biology and disease has been studied
for decades (1, 2). Carnitine has been proposed to be a con-

ditionally essential nutrient, and even termed vitamin BT. Car-
nitine content of foods varies widely, being very low in fruits,
vegetables, and grains; intermediate in milk products, eggs,
chicken, and fish; and very high in red meats. The proportion of
carnitine derived from the diet varies widely in humans, being
quite low in vegetarians and especially low with a vegan diet that
excludes dairy products and eggs. In contrast, about 75% of
carnitine is derived from the diet in meat eaters. Carnitine ho-
meostasis in humans (Fig. 1) is maintained by a modest rate of
endogenous synthesis, absorption from dietary sources, and
efficient tubular reabsorption by the kidney. Apart from the
dietary intake, carnitine is synthesized in humans in kidney, liver,
and brain from protein-derived 6-N-trimethyllysine (TML) via

3-hydroxy-6-N-trimethyllysine (HTML), 4-N-trimethylaminobutyr-
aldehyde (TMABA), and 4-N-trimethylaminobutyric acid [γ-
butyrobetaine (γBB)] (3). Renal resorption plays an important
role in carnitine metabolism, with considerable excretion if car-
nitine intake is abundant, but there is extremely efficient re-
sorption if body stores of carnitine are low. Carnitine is present
as free carnitine and as acylcarnitines, of which the latter reflect
the cellular acyl-CoA ester pool. Up to 99% of carnitine is in-
tracellular and is essential for mitochondrial function, where its
role is to enable transport of fatty acids into mitochondria, where
β-oxidation takes place (3); it is also involved in the transport of
peroxisomal oxidation products to the mitochondria.
Carnitine deficiency can develop secondary to dietary inade-

quacy or as an adverse effect of medical treatments. Although
humans can synthesize carnitine, nutritional deficiency can occur,
as when infants were fed early preparations of soy formulas that
were deficient in carnitine (4). Similarly, deficiency can arise with
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parenteral alimentation in neonates (5). Carnitine deficiency can
also occur secondary to administration of pivalate-conjugated
antibiotics or valproic acid (2). Various disease processes and
medical interventions, such as renal tubular disorders and chronic
hemodialysis, respectively, can also be associated with carnitine
deficiency.
There are primary and secondary genetic forms of carnitine

deficiency (6). Secondary deficiency is caused by various fatty
oxidation defects and organic acidemias that lead to carnitine
deficiency through urinary loss of acylcarnitines that accumulate
related to the enzyme deficiency. Primary systemic carnitine de-
ficiency is caused by biallelic loss-of-function mutations in the
SLC22A5 gene that encodes the plasmamembrane organic cation
transporter-2 (OCTN2). OCTN2 deficiency is characterized by
excessive urinary loss of carnitine, leading to systemic deficiency
with associated skeletal myopathy, cardiomyopathy, fatty liver,
and hypoglycemia. Although the possibility of a primary systemic
carnitine deficiency caused by a defect in carnitine biosynthesis
was postulated long ago, no primary disorders of carnitine bio-
synthesis have been described until now (7).
Administration of carnitine is the centerpiece of therapy for

systemic carnitine deficiency, and it is beneficial in some genetic
forms of secondary carnitine deficiency. Administration of car-
nitine and acetylcarnitine has been explored as an antioxidant and
for treatment of many disorders, including diabetic peripheral
neuropathy (8), heart failure (9), and mitochondrial disorders.

Recently, we discovered a deletion of the 6-N-trimethyllysine
dioxygenase (TMLD) gene [also known as trimethyllysine hydrox-
ylase, epsilon (TMLHE)] while studying probands with autism,
raising the question of whether there might be an association of
autism with TMLHEmutations (10). TMLHEmaps to the long arm
of the X chromosome near the boundary of the pseudoautosomal
region and encodes TMLD. TMLD is the first enzyme of the car-
nitine biosynthesis pathway (3) and is localized inmitochondria (11).
The etiology of severe, dysmorphic autism with a male/female

ratio of 3.2:1 (12) has become increasingly well defined as often
attributable to de novo mutations or recent mutations trans-
mitted for a few generations. These mutations include large copy
number variants (CNVs), which are detectable by chromosomal
microarray analysis in up to 25% of the most severe cases with
phenotypes that include major intellectual disability, which re-
stricts reproduction (13). De novo point mutations are also being
discovered as causes of autism using next-generation sequencing
of genomic DNA (14). Disease-causing CNVs are found in
∼10% of patients with intermediate phenotypes, often with less
severe intellectual disability (15, 16). In these cases, penetrance
may be incomplete and the phenotype can be highly variable,
with diagnoses of intellectual disability, autism, schizophrenia,
and idiopathic epilepsy seen with the same CNV (17–19). These
examples typify single-locus conditions, perhaps with genetic
and nongenetic modifier effects. Autism spectrum disorders and
related neurocognitive phenotypes blend into even more com-
plex genotype-phenotype relationships with evidence for two-hit
or two-locus pathogenesis (20). At the milder end of the autism
spectrum are patients who often have speech, have an in-
telligence quotient (IQ) ranging from low to the normal range,
and are nondysmorphic. This milder population, some of whom
meet diagnostic criteria for Asperger syndrome, can display up to
an 8:1 male/female ratio (21, 22), and will be referred to herein
as having nondysmorphic autism (NDA). This includes the
milder portion of the autism spectrum, but patients who have
NDA can have severe cognitive and behavioral phenotypes. The
etiology of NDA remains almost completely unknown, but the
extreme sex ratio may provide a clue as to its etiology.
In this paper, we show that TMLHE deficiency is a very

common inborn error of metabolism in males and suggest that it
may be significantly more frequent in autistic male-male sib pairs
than in controls.

Results
Deletions of Exon 2 Are Heterogeneous and Common in Autistic and
Healthy Males. Given the discovery of a deletion of exon 2 in
TMLHE in a male simplex proband with autism (10), we exam-
ined the frequency of TMLHE mutations in autism and control
populations. We studied simplex families primarily from the
Simons Simplex Collection (SSC) and multiplex families pri-
marily from the Autism Genetic Resource Exchange (AGRE)
collection, and we recruited multiple collaborators to study ad-
ditional families (Table 1). We have now identified a total of 16
male autism probands, six affected male siblings of probands, and
24 healthy adult males with deletions of exon 2, indicating that
this is a relatively common CNV (Table 1). For 28 of the 29
deletions characterized more thoroughly, size ranged from 5.7 to
15.9 kb and only exon 2 was deleted; one additional deletion of
59.6 kb removed exons 2–6 (Fig. 2 A and B and Table S1). Based
on position, size, and sequence, there was a minimum of 14 dif-
ferent deletion junctions among 29 unrelated families. Sequenc-
ing of the breakpoints of many deletions showed that almost all
junctions occurred in long interspersed elements and short in-
terspersed elements in the introns flanking exon 2 (Fig. 2B and
Table S2), as has been seen in other loci (23). For all SSC samples
(probands, heterozygous mothers, and healthy fathers), the de-
letions were present in both DNA extracted directly from blood
and DNA extracted from lymphoblastoid cell lines (LCLs).

Fig. 1. Carnitine biosynthesis and homeostasis in humans. Carnitine is syn-
thesized in four enzymatic steps. After release of TML by lysosomal protein
degradation, this compound is hydroxylated by TMLD, producing HTML.
HTML is cleaved by HTML aldolase (HTMLA) into TMABA and glycine. Sub-
sequently, TMABA is oxidized by TMABA-dehydroxygenase (TMABA-DH)
to form 4-N-trimethylaminobutyrate, also named γ-butyrobetaine (γBB). Fi-
nally, γBB is hydroxylated by γBBD, yielding L-carnitine. Because TMLD is
located in mitochondria, TML needs to be transported out of the lysosome
and across the inner mitochondrial membrane into the mitochondrial matrix
by means of transporters, which are unknown at this time. Depending on
the subcellular localization of the HTLMA (also uncertain, likely the cytosol),
HTML or γBB needs to be transported back to the cytosol (where γBBD is
located). In cells that do not contain γBBD, γBB is exported from the cell and
imported into tissues (liver, kidney, and brain in humans) that do express
γBBD by means of at least one specific transporter, presumably SLC6A13.
Carnitine is transported by OCTN2 and other lower affinity transporters
(not shown).
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In addition, we identified an extremely common intronic de-
letion (Fig. 2A) that appeared on the basis of comparative ge-
nomic hybridization (CGH) array to be indistinguishable in all
cases. This is equivalent to Database of Genomic Variants num-
bers 115349 and 104572, which appear to be identical, and/or to
number 97130, which is very similar. The intronic deletion was
present in 74% of 93 autism male probands and 71% of 48 control
males examined, and it should not be misinterpreted as causing
enzyme deficiency. This intronic deletion was present on 24 of 29
chromosomes from unrelated families with exon 2 deletion of
TMLHE (Table S1).
Genomic sequencing of exons for TMLHE is complicated by

the presence of two pseudoexons (7aP and 8aP) that are highly
homologous to exons 7a and 8a, and are imbedded in a large
inverted repeat downstream of TMLHE (24) (Fig. 2C). In addi-
tion, there are two alternative exons 7b and 8b, which are located
between the two inverted repeats and have sequences unrelated
to 7a and 8a. Sequencing of exons 1–8 of TMLHE from genomic
DNA in 536 SSC autism male probands, 98 AGRE probands, and
443 National Institute of Mental Health (NIMH) controls iden-
tified very few point mutations (Table S3). In addition to exon 2
deletion, sequencing in a multiplex AGRE family (AU 0177)
identified an arginine-to-glutamine change in codon 241 (R241Q)
in the mother and unaffected half-brother of the two autistic
males (Fig. S1). More recently, we have been able to study plasma
from 156 male SSC probands for carnitine biosynthesis metabo-
lites. We identified one male (Table S3) with biochemical ab-
normalities similar to those described below, and sequencing
identified an R70H mutation likely causing TMLHE deficiency.

Exon 2 Deletion Results in Loss of TMLD Activity and Absence of TMLD
Protein. The functional effect of deletion of exon 2 of TMLHE
was examined as TMLD enzyme activity based on its role in
carnitine biosynthesis. Cultured LCLs from males with deletion
of exon 2 had low or undetectable TMLD enzyme activity, and
heterozygous mothers had reduced activity compared with
healthy males (Fig. 3A). Results from family AU 0177 were
complex, with the two affected brothers with deletion of exon 2
having very low or undetectable enzyme activity but the un-
affected mother and half-brother showing low activity but higher
than that of the affected brothers (Fig. 3 A and B). The mother is
a compound heterozygote and transmitted the R241Q mutation
to the unaffected half-brother of the siblings with autism. Cells
with exon 2 deletion also lacked immunodetectable protein by
Western blot analysis (Fig. 3C). Many of the control and autism
cell lines in Fig. 3D have the intron 1 deletion, and many do not.
Analysis of RNA from LCLs using RT-PCR revealed low levels

of skipping of exon 2 in most samples and a stable transcript with
complete absence of exon 2 in cells from males with deletion of
this exon (Fig. S2A). Thus, nonsense-mediated decay is not
prominent for the exon 2 deletion transcript. This was confirmed
using a quantitative RT-PCR assay, which showed normal levels
of transcript for the exon 5/6 junction in all samples but complete
absence of the exon 1/2 junction in deletion samples (Fig. S2B).

Diagnostic Metabolite Abnormalities in Plasma and Urine. The two
affected brothers fromAGRE family AU 0177 had a normal facial
appearance in childhood and were otherwise nondysmorphic.
They both had normal plasma free carnitine levels (33 and
34 μmol/L, normal = 22–65 μmol/L) at the recent ages of 15 and
17 y. In urine of the affected brothers, HTML and γBB were
undetectable and the excretion of TML was threefold that of
controls (Fig. 4A). Plasma from the two brothers and from 5 SSC
probands showed a significant increase in TML, complete absence
of HTML, and severely reduced levels of γBB, except for one case
(Fig. 4B). The (HTML+ γBB)/TML ratio was very low in patients
compared with control plasma and may be an excellent index of
TMLD activity (Fig. 4C). These data indicate that TMLHE de-
ficiency represents a unique inborn error of carnitine biosynthesis.
To search for other evidence of a common TMLHE deficiency and
for other defects in carnitine biosynthesis, urine from 29 SSC
probands who did not have any known TMLHE mutations was
studied and did not reveal any abnormal carnitine metabolites.

Sex Ratio in NDA Is Not Caused by a Common Inherited Mutation in
TMLHE. It was important to determine whether there was a com-
mon mutation or epigenetic mechanism causing TMLD enzyme
deficiency, and perhaps explaining the male predominance in
some forms of autism. To address the possibility of a common but
difficult to detect inherited mutation, we analyzed SNP data from
Illumina arrays on 411 AGRE families; this revealed no evidence
of linkage for TMLHE, which is the most telomeric gene on Xq
that is not on Y, or for VAMP7, which is nearby but across the
pseudoautosomal boundary and present on both the X and Y
chromosomes. For the TMLHE region, a maximum nonpara-
metric linkage score of 1.25 and logarithm of odds (LOD) score of
0.34 were observed for markers located within and flanking the
TMLHE gene. For the VAMP7 gene region, a maximum non-
parametric linkage score of 0.76 and LOD score of 0.15 were
observed. Thus, there was no evidence for linkage at either locus.
This is not surprising, given the extensive genetic heterogeneity
in autism.

TMLHE Deficiency Likely Is a Risk Factor for Autism.Because deletion
of exon 2 was more common than any other mutations detect-
able by genomic sequencing, and because it was associated with
loss of enzyme activity, it was expedient to analyze a large series
of autism cases and controls for exon 2 deletion. A PCR assay

Table 1. Sources of male autism and control samples and
methods of testing

No. Deletion

Simplex autism
SSC 1,887 6*
SCAP 80 0
Houston 24 0
Toronto 328 3
Paris 333 0
New York 252 0

Totals 2,904 9
Male probands from male-male sibling pairs†

AGRE + NIMH 752 7
Toronto 93 0
Paris 53 0
New York 11 0

Totals 909 7
Male probands from male-female sibling pairs†

Paris 38 0
New York 5 0

Controls
SSC, NIMH, and AGRE autism

fathers
2,197 7

NIMH controls 897 3
BPR 49 1
Houston fathers 36 0
Multiplex fathers 615 0
WTCCC 3,018 9
Toronto 1,975 4

Totals 8,787 24

SCAP, South Carolina Autism Project; WTCCC, Wellcome Trust Case–Con-
trol Consortium.
*Screening for the deletion and confirmation were performed as described
in Materials and Methods.
†Excludes affected sibling.
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was designed with primers slightly outside the boundaries of
exon 2 to give a product of 538 bp in normal males but no
product for males with deletion of exon 2. An example of the
PCR assay with an internal control product is shown in Fig. S3. If
a sample failed to give a PCR product for exon 2, the presence or
absence of the deletion was then confirmed using CGH custom
array with densely spaced oligonucleotides interrogating the
TMLHE region, as shown in Fig. 2A. For PCR analysis, we fo-
cused entirely on males because the assay did not reliably detect
the deletion in heterozygous females.
Using the PCR assay, we tested simplex male probands pri-

marily from the SSC with lesser numbers of probands from the
South Carolina Autism Project and from probands from Houston,
TX. We also tested male controls, including SSC fathers of autism
probands, NIMH controls, and Baylor Polymorphism Resource
(BPR) controls. With the collaboration of the laboratories of two
of the authors (J.S.S. and D.H.G.), we tested multiplex probands
(here, multiplex refers to male-male sibling pairs both affected
with autism) from the AGRE, NIMH, and Nashville collections.
We subsequently developed collaborations with the laboratories of
four of the authors (S.W.S., C.B., J.D.B., and M.E.H.) to expand
the data for exon 2 deletion in autism male probands and control
males. Some collaborating laboratories used quantitative PCR
(qPCR) or existing Affymetrix 6.0 array data as the primary test for
deletion of exon 2, as specified in Table 1. All deletion probands
were validated, and approximate coordinates were determined
using the custom TMLHE array. Deletions in control males from
the laboratories of S.W.S. and M.E.H. were not validated.
Comparison of the data for male probands from simplex

families (9 in 2,904 or 1 in 323 deleted) with all controls (24 in
8,787 or 1 in 366 deleted) did not provide evidence for an as-
sociation (P= 0.44) (Table 1). One SSC proband (11680.p1) also
had deletion of chromosome 16p11.2 and was eliminated from

these calculations and from the phenotypic data. We hypothe-
sized for numerous reasons reviewed in the discussion that the
frequency of exon 2 deletion might be substantially higher in
probands from male-male affected sib-pairs. The frequency of
exon 2 deletion was 2.85-fold higher in these multiplex probands
(7 in 909 or 1 in 130) compared with all male controls, with a P
value of 0.023 (Table 1). For each multiplex family, only one
affected male (identified as the proband) was tested initially. All
genotypes were consistent with the X-linked inheritance; all 17
mothers of probands with deletion of exon 2 were tested and
were heterozygous for the deletion, confirming that the deletions
were not cell culture artifacts.
We next examined the affected male siblings of the multiplex

male probands and found that six of the seven had the same de-
letion as the proband. Based on analysis using the Transmission
Disequilibrium Test (TDT), the probability of obtaining this re-
sult, if there were no association, is 0.012. Using metaanalysis, we
calculated a Stouffer’s z-statistic to combine the data for multi-
plex probands compared with control males and data from the
TDT.We obtained a Z-score of 2.90 and a P value of 0.0037 using
Stouffer’s method, suggesting that TMLHE deficiency is a risk
factor for autism. If the data from the simplex families are in-
cluded in the metaanalysis, the Z-score is −2.81 and the P value is
0.0051, which is only slightly higher than the P value of 0.0037.

Cognitive Function of TMLHE-Deficient Males with Autism Varies
Widely. Significant phenotypic information was available for
seven SSC probands, two of three Canadian Genetic probands,
seven SSC unaffected fathers, all seven multiplex probands and
six affected brothers, and 3 NIMH control males with deletion of
exon 2 of TMLHE (Tables S4 and S5). The levels of cognitive and
language functioning varied considerably across patients. The
full-scale IQ of autistic males with deletion of exon 2 ranged from

Fig. 2. Exon 2-containing deletions
found in TMLHE and structure of
TMLHE. (A) Array CGH showing
eight exonic deletions in TMLHE,
with the relative location of TMLHE
exons 2–6 aligned above the array
CGH plots (GRCh37/hg19 assembly;
http://genome.ucsc.edu). The hori-
zontal axis shows chromosome po-
sition, and the vertical axis shows
the log2 ratio of array signal. Semi-
transparent filled boxes on CGH
plots highlight the regions of aber-
ration; all samples have deletions
involving exon 2, and most have a
separate deletion in intron 1 (red
circle). All samples are autism pro-
bands with identifiers found in
Tables S1, S4, and S5. (B) Twenty-
four unrelated individuals with
deletions involving exon 2 of TMLHE
are mapped. Deletion coordinates
were determined by array CGH un-
less specified by PCR assay. White
arrowheads indicate the continua-
tion of the deletion for SSC 13928.
p1. NA 12003 is an unaffected in-
dividual whose deletion is published
(38) and was better characterized in
this study. BPR 664 is an unaffected
individual. (C) Diagram of gene
structure. Large open arrows repre-
sent near-identical inverted repeats.
Fa, father; P1, proband; HI, AGRE
individuals; #, individual first de-
scribed by Celestino-Soper et al. (10).
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38 to 143; 5 of 21 with available data were in the range of in-
tellectual disability, and 3 of 21 were reported as untestable. One
proband had seizures. For six of six cases in which information
was available, patients were described as nondysmorphic. With
respect to the controls, two of the seven SSC fathers had at least
one domain with an elevated broader autism phenotype score
based on the self-report Broad Autism Phenotype Questionaire,
but the Social Responsiveness Scale rating by significant other
and Family History Interview-Interviewee Impression scores were
not consistent with the broader autism phenotype.

Assuming a True Association, the Penetrance for Autism in TMLHE
Deficiency Would Be Very Low. The majority of males with an
exon 2 deletion in the US and UK populations are expected to

be phenotypically “normal” as adults. TMLHE deficiency was
present in slightly less than 1% of probands from male-male
affected sibling pairs; thus, it would be present in substantially
less than 1% of all cases of autism. If we assume an overall
frequency of 1 in 100 for autism, with a 4:1 male/female ratio,
a frequency of 1 in 350 for TMLHE deficiency in normal males,
and a frequency of TMLHE deficiency of 1 in 250 or 1 in 150 in
males with autism, the penetrance would calculate at 2.2% or
3.6%, respectively (SI Materials and Methods and Table S6).

Discussion
TMLHE deficiency is a previously undescribed inborn error of
metabolism discovered about 100 y after Garrod described such
conditions in his 1908 Croonian Lectures to the Royal College of

Fig. 3. Genetic and enzymatic characterization of hemizygous deletion of exon 2. (A) TMLD activity measured in lymphoblast homogenates of three families
with exon 2 deletion. (B) PCR assay results for the AU 0177 family showing the deletion in the two affected brothers (1, 2) and in the mother (3) but not in the
father (4), unaffected maternal half-brother (5), or unaffected controls (C1 and C2). There is bias of amplification in the mother, such that the normal band is
faint. dl, deletion; nl, normal. (C) (Upper) TMLD activity and Western blot analysis of 2 individuals with exon 2 deletion (P1, HI0690; P2, BPR664) and three
controls (C1–C3). Purified TMLD (pTMLD) is used as a positive control. (Lower) Western blot analysis of 2 individuals (P1 and P2) with (+) or without (−)
addition of pTMLD, showing the complete absence of protein in cases of exon 2 deletion and confirmation of the identity of the immunoreactive material as
TMLD. The upper band in the Western blot is an irrelevant protein. (D) (Upper) TMLD activity measured in lymphoblast homogenates from several autism
males. *,TMLHE exon 2 deletion; #, E287K; d, deletion in intron 1 in 13 individuals; −, no deletion in intron 1 in 9 individuals. SSC 12353.p1 was not tested for
the presence of intron 1 deletion. (Lower) TMLD activity measured in lymphoblast homogenates from male controls. BPR indicates local unaffected controls,
and NA 12003 is an unaffected individual. SSC 12353.fa was not tested for presence of intron 1 deletion. There was no apparent correlation of the level of
enzyme activity with the presence or absence of the intronic deletion. For A, C, and D, assays were run in duplicate and the average is plotted without error
bars. fa, father; mo, mother; p1, proband.
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Surgeons. The frequency of TMLHE deficiency is startling, at ∼1
in 350 control males of European descent, making it at least 20-
fold more frequent than phenylketonuria in males. The enzyme
deficiency and metabolite changes in plasma and urine are typ-
ical for an inborn error of metabolism. TMLHE appears to be
a gene in which deletions are much more common than point
mutations. There is precedent for this at the DMD, PMP22,
UBE3A, and other loci causing Duchenne muscular dystrophy,
hereditary neuropathy with liability to pressure palsies, Angel-
man syndrome, and other phenotypes, respectively. These biases
are usually explained, in part, by genome architecture, as is likely
the case for TMLHE.
It might be of some concern that we did not detect any in-

dication that TMLHE deficiency is a risk factor for simplex au-
tism. However, simplex and multiplex groups of autism families
are significantly different, with an expectation of higher rates of
de novo mutations in simplex compared with multiplex families
and a higher rate of inherited mutations in multiplex vs. simplex
families. In addition, shared genetic modifiers and shared envi-
ronment are potential factors in multiplex families. Given these
differences between simplex and multiplex families, the apparent
low penetrance of TMLHE deficiency for autism, and the modest
sample size, the negative result for simplex families is not sur-
prising. Assuming that the association with multiplex autism is
replicated, we would expect that there would be a significant
association with simplex autism males with a much larger sample
size, because all multiplex families are initially simplex before the
birth of a second affected sibling. We would argue that it is not
appropriate in this circumstance of low penetrance to combine
the probabilities from simplex and multiplex families for an as-
sociation of TMLHE deficiency with autism, because they are
significantly different samples. However, if one were to do so, the
failure to detect an association in a sample of simplex families of
this size, given the necessarily low penetrance, has relatively weak
statistical significance and does not detract substantially from the
P value of 0.0037 observed with male-male multiplex families.
We conclude that TMLHE deficiency is likely to be a weak risk
factor for autism, but replication studies are needed, particularly
those focusing on male-male multiplex families. The data make it
clear that TMLHE deficiency is neither necessary nor sufficient
to cause autism. With roughly 4 million births per year in the
United States, this would equate to about 5,600 deficient males
born per year, which, in turn, would equate to 168 males with
TMLHE deficiency and autism assuming a 3% penetrance.
One might ask whether carnitine metabolism plays a broader

role in the etiology of NDA. One possibility is that TMLHE
deficiency is entirely benign, as is generally believed to be the case
for pentosuria and histidinemia. Alternatively, TMLHE deficiency
could mediate harmful effects either through toxic accumulation of

TML or through deficiency of downstream metabolites, including
HTML, TMABA, γBB, or carnitine. All these are possible, but we
believe that the most attractive hypothesis at this time is that there
is an increased risk for autism, and that this risk is modified by
dietary intake of carnitine from birth through the first few years of
life. Carnitine intake of the pregnant or nursing mother could also
be important. There are extensive reports of mitochondrial ab-
normalities in autism, as reviewed recently (25), and some of the
mitochondrial dysfunction could be secondary to carnitine de-
ficiency. There are reports of low plasma carnitine in autism (26–
29), but these reports have not prompted intensive investigations
into a possible role of carnitine deficiency in autism and further
studies are needed.
Another hypothesis could be that other genetic abnormalities

involving the carnitine pathway might confer a risk for autism.
Features of autism generally are not reported in children with
systemic carnitine deficiency, although cases of autism with
carnitine deficiency have been reported (26). Given the neuro-
logical basis of autism and the prominent expression of TMLHE
in hippocampal neurons and Purkinje cells, one possibility would
be that symptoms of autism might be secondary to carnitine
deficiency in the brain. If that were the case, the pathophysiology
of systemic carnitine deficiency would be very different from
TMLHE deficiency. The former has low plasma carnitine, but
ability to synthesize carnitine in the brain and elsewhere is intact.
In the latter, plasma carnitine may be normal or low-normal
based on dietary intake, but neurons are unable to synthesize
carnitine and become completely dependent on transfer across
the blood–brain barrier. If carnitine deficiency in the brain was
deleterious, dietary deficiency, excess renal losses, disorders of
transport (especially across the blood–brain barrier), and defects in
synthesis might be risk factors for autism. Relatively little is known
about transport across the blood–brain barrier, but this transport
may be a limiting factor, because the concentration of carnitine in
cerebrospinal fluid is 10- to 15-fold lower than in plasma (30, 31).
As shown in Fig. 1, not all tissues are capable of complete carnitine
biosynthesis because of the differential expression of the last en-
zyme, γBB dioxygenase (γBBD), which is only expressed in kidney,
liver, and brain in humans. After degradation of proteins that
contain TML residues, TML is converted to γBB, which is then
transported to the tissues that express γBBD and converted into
carnitine. The plasma membrane γBB transporter likely is enco-
ded by the SLC6A13 gene, which is known as a betaine/GABA
transporter and has recently been suggested to function in carni-
tine biosynthesis as the liver γBB transporter (32). Transport of
either or both carnitine and γBB across the blood–brain barrier
could be important.
One important question is whether the association with autism

is valid and can be replicated in future studies. Although

Fig. 4. Increased TML and decreased HTML and γBB in patients with TMLHE exon 2 deletions. (A) Bar diagram of concentrations (mean ± SD) of carnitine
biosynthesis intermediates in urine of two patients with exon 2 deletion (1, HI0690; 2, HI0691) compared with controls. (B) Box and whisker plot of carnitine
biosynthesis intermediates in plasma of seven patients with exon 2 deletion (HI0690, HI0691, SSC 13928.p1, SSC 13489.p1, SSC 11000.p1, SSC 11229.p1, and SSC
11680.p1) compared with controls. (C) Box and whisker plot showing the diagnostic potential of the (HTML + γBB)/HTML ratio as an indicator of TMLHE
deficiency. All seven patients have a very low ratio. The black square represents the mean of the controls, and whiskers show the minimum and maximum
values of the control group.
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TMLHE deficiency was discovered by a genome-wide molecular
analysis, a P value of genome-wide significance is not needed
here, because this is a simple test of the hypothesis that a newly
discovered inborn error of metabolism is a risk factor for autism
or not. The metaanalysis P value of 0.0037, indicating an asso-
ciation with multiplex autism, suggests that the data indicating an
association are unlikely to have occurred by chance. If pene-
trance for autism is influenced by carnitine intake during infancy,
the risk for autism associated with TMLHE deficiency may be
greater in countries with a high frequency of vegetarian diets and
lower meat or beef intake. China, India, and South Korea are
all countries where some studies of the incidence of autism are
available (22, 33, 34) and there is a more vegetarian diet and/or
much lower beef intake.
Two clinical investigations are of immediate interest and are

being initiated. One is studying carnitine metabolites in cere-
brospinal fluid of infants with autism with and without TMLHE
deficiency near the age of onset, and the other is treating very
young infants with autism with and without TMLHE deficiency
with carnitine or γBB supplementation. Whether increased
carnitine intake before onset of autism might prevent the de-
velopment of symptoms would require a more complex study.
There is a recent report of a trial of carnitine supplementation
in autism suggesting clinical improvement (35), but the study
included some patients up to 10 y of age who might be unlikely
to respond; it would be desirable to have data from very young
patients, preferably nondysmorphic, with and without TMLHE
deficiency. The data reported here suggest that TMLHE de-
ficiency is a risk factor for NDA and that carnitine metabolism
could be a target for therapeutic intervention in this and
related disorders.

Materials and Methods
Human Subjects and DNA. All work with direct involvement of human subjects
was approved by the relevant institutional review boards or equivalents, and
informed consent was obtained from all subjects. For SSC, AGRE, and NIMH
samples, DNA derived from LCLs was obtained from the Rutgers University
Cell and DNA Repository. Additional information is provided in SI Materials
and Methods. The numbers of simplex probands, multiplex male-male sib
pairs, and controls from various sources are specified in Table 1. Detailed
information for cell culture and for identification of deleted probands and
controls is given in SI Materials and Methods. For the screening of samples
included in Table 1, we used PCR assays (Fig. S2), except for SSC samples,
where Illumina arrays (36) were also used; for Toronto and the Wellcome
Trust Case–Control Consortium, where Affymetrix 6.0 arrays were used; and
for Paris and New York, where qPCR assays were used. All deletions in
patients with autism were confirmed using custom arrays for the TMLHE
region (Fig. 2A).

PCR and Sanger dideoxy-sequencing of TMLHE exons 1–8 was performed
for 536 SSC male probands, 98 affected AGRE males from male-male mul-
tiplex families (brothers or half-brothers with the same mother), and 443
NIMH male controls (primers provided in Table S7).

CGH Array. All arrays used in this study were designed and analyzed based on
University of California, Santa Cruz (UCSC) Genome Browser hg18 (National
Center for Biotechnology Information Build 36, March 2006). The coor-
dinates found in tables and figures are converted to hg19 (Genome Refer-
ence Consortium: human GRCh Build 37, February 2009). An Agilent CGH
custom array of design ID 028249 was used to confirm TMLHE deletions
originally found by PCR assay or those that were detected by the 1M Illu-
mina SNP array through a collaborative study of SSC families (36). The cus-
tom array design is available on the Agilent’s eArray website (www.agilent.
com/genomics/earray). Analysis of CNVs was done using Agilent’s DNA
Analytics software (version 4.0.76) with the following settings: aberration
algorithm ADM-2, a minimum of three consecutive probes per region, and
a minimum absolute average log2 ratio of 0.25 for any given region.

The protocol for DNA digestion, labeling, purification, and hybridization
to the arrays followed the manufacturer’s instructions with some mod-
ifications, as described previously (37). Genomic DNA (800 ng) from the
SSC individual and from a single male reference was used in the digestion.
Each slide was scanned into an image file using the Agilent G2565 DNA

Microarray Scanner at a 3-μm scan resolution. Each image file was quantified
using Agilent Feature Extraction software (version 10.7.3.1). The Agilent
custom-focused validation files were uploaded into the DNA Analytics
software for analysis.

Enzyme Assays and Metabolite Determinations. All individuals tested for
TMLD enzyme activity were assayed for the presence or absence of exon 2 of
TMLHE by PCR or CGH array. These included BPR controls, AGRE and SSC
individuals, and a Centre d’Étude du Polymorphisme Humain control
(NA12003) (38). TML was obtained from Sigma–Aldrich. [2H9]TML and [2H3]γ
BB were synthesized as described previously (11). [2H9]HTML was prepared
enzymatically by incubating [2H9]TML with Neurospora crassa TLMD, het-
erologously expressed in Saccharomyces cerevisiae as described previously
(39). The resulting mixture of [2H9]HTML and [2H9]TML was applied to
Amicon Ultra 30-kDa filters (Millipore), and the deproteinized filtrate was
used as an internal standard for TML and HTML. All other reagents were of
analytical grade.

Lymphoblast pellets were homogenized in 10 mMMops buffer containing
0.9% (wt/vol) NaCl, 10% (wt/vol) glycerol, and 5mMDTT (pH 7.4). The protein
concentration was determined by the method of Bradford (40) using human
serum albumin as a standard. For measurement of TMLD and γBBD activities,
the reaction mixture consisted of 20 mM potassium phosphate buffer con-
taining 50 mM KCl, 3 mM 2-oxoglutarate, 10 mM sodium ascorbate, 0.5 mM
DTT, 0.5 mM ammonium iron sulfate, 2.5 mg/mL BSA, 2 mM TML, and 0.2
mM [2H3] γBB at pH 7.4, with a final volume of 250 μL. The reaction was
started by adding 50 μL of homogenate (target final protein concentration
of 0.2 mg/mL for lymphoblast homogenates) to the reaction mixture and
was incubated at 37 °C for 30 min. The reaction was terminated by the
addition of ZnCl2 to a final concentration of 1 mM, and the reaction mix-
tures were placed on ice. The ZnCl2 solution also contained the following
internal standards: 50 pmol of [2H9]HTML, 140 pmol of [2H9]TML, 140 pmol
of [2H3]γ-BB, and 550 pmol of [2H3]carnitine. Subsequently, the reaction
mixture was loaded onto an Amicon Ultra 30-kDa filter and centrifuged at
14,000 × g for 20 min to separate the metabolites (TML, HTML, γ-BB, and
carnitine) from the enzymes and remove most of the proteins. The filtrate
(100 μL) was derivatized with methylchloroformate, and the produced HTML
was quantified using ion-pair ultra performance liquid chromatography
(UPLC)-tandem MS essentially as previously described (11).

For determination of carnitine biosynthesis metabolites in plasma and
urine, internal standards were added to each homogenate and derivatization
was performed as described above. Plasma samples were deproteinized using
an Amicon Ultra 30-kDa filter. Urine samples were directly derivatized, and
TML, HTML, carnitine, and γ-BB were quantified using ion-pair UPLC-tandem
MS as previously described (11). For immunoblot analysis, a Multiphor II
Nova Blot electrophoretic transfer unit (Amersham Pharmacia Biotech) was
used to transfer proteins onto a Protran nitrocellulose membrane (What-
man) as described by the manufacturer. After blocking of nonspecific
binding sites with 50 g/L Protifar (Nutricia) and 10 g/L BSA in PBS with Tween
20 (1 g/L) for 1 h, the membrane was incubated for 2 h in the same buffer
without Protifar with 1:3,000 dilution of rabbit polyclonal antibodies raised
against human recombinant TMLD fused to maltose-binding protein (41).
Detection was performed with IRDye 800-conjugated goat anti-rabbit anti-
body (LI-COR Biosciences) according to the manufacturer’s instructions.
Membranes were then dried and scanned using the Odyssey Infrared Im-
aging System (LI-COR Biosciences).

TDT, Metaanalysis, and Penetrance Calculations. After 7 of 909 probands from
multiplex male-male families were identified, the P value favoring a risk re-
lationship of TMLHE deficiency to autism was 0.022 based on a one-sided
Fisher’s exact test. This outcome could have occurred by chance or could have
occurred because there is indeed a risk relationship. If the result occurred by
chance, 3.5 of the seven siblings would be expected statistically to have the
deletion, if all mothers are assumed to be carriers. If the result reflects a true
risk relationship, a higher proportion, but not necessarily all, of the autistic
siblings should have the deletion. Seven of the eight siblings carried the de-
letion. Statistical analysis of the sibling data was performed by implementing
the TDT (42–45). Because the X chromosome is being analyzed, only trans-
missions from the mother are informative. We examined whether or not the
deletion had been transmitted to the affected male sibling from his mother
and applied McNemar’s χ2 (46) to the resulting 2 × 2 table to guard against
significant results attributable to population substructure/admixture. To
combine the results from the comparison of multiplex probands to controls
(P = 0.023) and from the TDT analysis of affected male siblings (P = 0.012),
metaanalysis was performed using Stouffer’s method (47). The metaanalysis
resulted in a Z-score of 2.90 and a P value of 0.0037.
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For estimating penetrance, we used a hypothetical population of 2 million
individuals at risk with an equal number of males and females, as shown in
Table S6. We assumed a frequency of autism of 1 in 100 with a 4:1 male/
female ratio. We assumed that 1 in 350 normal males carried deletion of
exon 2 of TMLHE. We then calculated the penetrance assuming that either 1
in 250 or 1 in 150 males with autism carries the deletion.
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